Previous Lecture | Lecture 17 | Next Lecture |
Lecture 17, Thu 11/21
Binary Search Trees cont.
Recorded Lecture: 11_21_24
Binary Search Tree (BST)
- Recall that a binary tree is a tree structure where a node may have at most two children
- Binary Search Trees (BST) are binary trees that have the following property:
- Values that are less than the parent are found in the left subtree
- Values that are greater than the parent are found in the right subtree
- This is known as the BST property
- Binary Search Trees are also one way to implement a Map Abstract Data Type
- A Map ADT maps keys to corresponding values
- Think of keys defining where in the BST structure a node gets inserted
- And each node has a corresponding value field
- Similar to how Python Dictionaries work on a high-level (but the underlying implementation between a Python Dictionary and BST are different (each with pros / cons))
- Example: Inserting the following keys into a BST
- Note: Insertion order of elements affects the structure of the tree!
- Example: Inserting the same elements in different order
- Also note: inorder traversal in a BST will visit the nodes in order - try it out!
BST TreeNode and BST Implementation
# TreeNode.py
class TreeNode:
def __init__(self,key,val,left=None,right=None, parent=None):
self.key = key
self.payload = val
self.leftChild = left
self.rightChild = right
self.parent = parent
def hasLeftChild(self):
return self.leftChild # Note: Python considers None as a False value
def hasRightChild(self):
return self.rightChild
def isLeftChild(self):
return self.parent and self.parent.leftChild == self
def isRightChild(self):
return self.parent and self.parent.rightChild == self
def isRoot(self):
return not self.parent
def isLeaf(self):
return not (self.rightChild or self.leftChild)
def hasAnyChildren(self):
return self.rightChild or self.leftChild
def hasBothChildren(self):
return self.rightChild and self.leftChild
def replaceNodeData(self,key,value,lc,rc):
self.key = key
self.payload = value
self.leftChild = lc
self.rightChild = rc
if self.hasLeftChild():
self.leftChild.parent = self
if self.hasRightChild():
self.rightChild.parent = self
# BinarySearchTree.py
from TreeNode import TreeNode
class BinarySearchTree:
def __init__(self):
self.root = None # A BST just needs a reference to the root node
self.size = 0 # Keeps track of number of nodes
def length(self):
return self.size
def put(self,key,val):
if self.root:
self._put(key,val,self.root)
else:
self.root = TreeNode(key,val)
self.size = self.size + 1
# helper method to recursively walk down the tree
def _put(self,key,val,currentNode):
if key < currentNode.key:
if currentNode.hasLeftChild():
self._put(key,val,currentNode.leftChild)
else:
currentNode.leftChild = \
TreeNode(key,val,parent=currentNode)
else:
if currentNode.hasRightChild():
self._put(key,val,currentNode.rightChild)
else:
currentNode.rightChild = \
TreeNode(key,val,parent=currentNode)
def get(self,key): # returns payload for key if it exists
if self.root:
res = self._get(key,self.root)
if res:
return res.payload
else:
return None
else:
return None
# helper method to recursively walk down the tree
def _get(self,key,currentNode):
if not currentNode:
return None
elif currentNode.key == key:
return currentNode
elif key < currentNode.key:
return self._get(key,currentNode.leftChild)
else:
return self._get(key,currentNode.rightChild)
# pytests
from BinarySearchTree import BinarySearchTree
def test_constructBST():
BST = BinarySearchTree()
assert BST.root == None
assert BST.length() == 0
def test_insertRoot():
BST = BinarySearchTree()
BST.put(10, "ten")
assert BST.root.key == 10
assert BST.root.payload == "ten"
assert BST.root.hasLeftChild() == None
assert BST.root.hasRightChild() == None
assert BST.root.isLeftChild() == None
assert BST.root.isRightChild() == None
assert BST.root.isRoot() == True
assert BST.root.hasAnyChildren() == None
assert BST.root.isLeaf() == True
assert BST.root.hasBothChildren() == None
BST.root.replaceNodeData(20, "twenty", None, None)
assert BST.root.key == 20
assert BST.root.payload == "twenty"
def test_insertNodes():
BST = BinarySearchTree()
BST.put(10, "ten")
BST.put(20, "twenty")
BST.put(15, "fifteen")
BST.put(5, "five")
assert BST.root.key == 10
assert BST.root.leftChild.key == 5
assert BST.root.rightChild.key == 20
assert BST.root.rightChild.leftChild.key == 15