Previous Lecture Lecture 8 Next Lecture

Lecture 8, Tue 10/22

Binary Search

Recorded Lecture: 10_22_24

Recall

def f1(n):
	l = []
	for i in range(n):
		l.insert(0,i)
	return

Binary Search Algorithm

Let’s do some TDD and write tests before we write the function!

def test_binarySearchNormal():
	assert binarySearch([1,2,3,4,5,6,7,8,9,10], 5) == True
	assert binarySearch([1,2,3,4,5,6,7,8,9,10], -1) == False
	assert binarySearch([1,2,3,4,5,6,7,8,9,10], 11) == False
	assert binarySearch([1,2,3,4,5,6,7,8,9,10], 1) == True
	assert binarySearch([1,2,3,4,5,6,7,8,9,10], 10) == True

def test_binarSearchDuplicates():
	assert binarySearch([-10,-5,0,1,1,4,4,7,8], 0) == True
	assert binarySearch([-10,-5,0,1,1,4,4,7,8], 2) == False
	assert binarySearch([-10,-5,0,1,1,4,4,7,8], 4) == True
	assert binarySearch([-10,-5,0,1,1,4,4,7,8], 2) == False

def test_binarySearchEmptyList():
	assert binarySearch([], 0) == False

def test_binarySearchSameValues():
	assert binarySearch([5,5,5,5,5,5,5,5,5,5,5], 5) == True
	assert binarySearch([5,5,5,5,5,5,5,5,5,5,5], 0) == False

Binary Search Implementation (iterative)

def binarySearch(intList, item):
	first = 0
	last = len(intList) - 1
	found = False

	while first <= last and not found:
		mid = (first + last) // 2
		if intList[mid] == item:
			found = True
		else:
			if item < intList[mid]:
				last = mid - 1
			else:
				first = mid + 1
	return found

Binary Search (recursive)

def binarySearch(intList, item):
	if len(intList) == 0: # base case
		return False

	mid = len(intList) // 2
	if intList[mid] == item:
		return True
	elif item < intList[mid]:
		return binarySearch(intList[0:mid], item)
	else:
		return binarySearch(intList[mid+1:], item)